Hitherto, maslinic acid has been found only in a few plants [2, 4, 5]. This is the first time that oleanolic and maslinic acid have been isolated from olives.

LITERATURE CITED

- 1. A. M. Aliev, I. S. Movsumov, and S. V. Serkerov, First Congress of Azerbaidzhan
- Pharmacists. Abstracts of Lectures [in Russian], Baku (1976), p. 148.
- 2. L. Caglioti, G. Cainelli, and F. Minutilli, Gazz. Chim. Ital., <u>91</u>, 1387 (1961).
- 3. R. Caputo, L. Mangoni, P. Monoco, P. Previtera, Phytochemistry, <u>13</u>, 2825 (1974).
- 4. A. A. Savina, T. A. Sokol'skaya, and D. A. Fesenko, Khim. Prir. Soedin., 113 (1983).
- 5. S. Passannanti, M. Paternostro, and F. Piozzi, Phytochemistry, 22, 1044 (1983).

TRITERPENOIDS OF AN ETHEREAL EXTRACT OF THE LEAVES

AND FEMALE CATKINS OF Betula divaricata

G. V. Malinovskaya, N. D. Pokhilo, V. A. Denisenko, and N. I. Uvarova

UDC 581.192+547.914

From the unsaponifiable fraction of an ethereal extract of birch leaves collected in July 1982 in the environs of the village of Nizhneangarsk, Buryat ASSR, we have isolated β -sitosterol and also triterpenoids of the dammarane series — betulafolienetriol (0.04% on the weight of the air-dry leaves), betulafolienetriol oxide (0.03%), dammar-25-ene-3 α ,12 β , 20(S),24-tetraol (I) [1, 2], and a new triterpene (II).

Triterpene (II), $C_{30}H_{52}O_4$, mp 169-172°C (ethanol), $[\alpha]_D^{18}$ -4° (c 0.5; chloroform). The

PMR spectrum of (II) showed the signals of the protons of seven tertiary methyl groups at 0.84, 0.89, 0.90, 0.94, 0.98, 1.16, and 1.74 ppm (3 H, d-d, J = 0.8, J = 1.5 Hz), the signals of carbinyl protons at 3.41 ppm (1 H, t, J = 2.8 Hz, H_e), 3.58 ppm (1 H, dt, J = 5.2 Hz, J = J = 10.4 Hz, H_a¹²), and 4.02 ppm (1 H, dd, J = 2.7 Hz, J = 8.6 Hz, H²⁴), and the signals of olefinic protons at 4.79 ppm (1 H, dq, J = 15 Hz, J = 0.8 Hz, H_{cis}²⁶) and 4.97 ppm (1 H, dq, J = 0.8 Hz, J = 0.8 Hz, J = 0.8 Hz, H²⁶_{trans}).

A comparative analysis of the ${}^{1}H$ and ${}^{13}C$ spectra of the triterpenes (I) and (II) showed that they were epimers in relation to C^{24} .

Characteristic signals in the PMR spectrum of the triterpene (I) and its 24-epimer (II) are $(ppm, CDCl_3)$:

Epimer	H - 24	H,26-trans-	H-26,cis-
Triterpene (I)	4.11 (t)	4.96 (s)	4.85 (s)
Triterpene (II)	4.02 (d-d)	4.97 (s)	4.79 (s)

The ¹³C chemical shifts of the C^{16} and C^{17} atoms and those of the side chains of triterpenes (I) and (II) were as follows, ppm, $CDCl_3$):

To confirm the structure of triperpene (II) we performed the following chemical transformations. Triterpene (I) was oxidized with manganese dioxide in absolute chloroform, which led to the corresponding ketone at C^{24} (III). The PMR spectrum of (III) showed the signals

Pacific Ocean Institute of Bioorganic Chemistry, Far-Eastern Scientific Center, Academy of Sciences of the USSR, Vladivostok. Translated from Khimiya Prirodnykh Soedinenii, No. 1, pp. 126-127, January-February, 1985. Original article submitted June 25, 1984.

of methyl group protons at 0.84, 0.88, 0.90, 0.94, 0.99, 1.11, and 1.88 (3 H, dd, J = 0.8 Hz, J = 1.6 Hz), the signals of carbinyl protons at 3.40 (1 H, t, J = 2.8 Hz, H_e^3), 3.60 (1 H dt, J = 5.4 Hz, J = 10.6 Hz, H_a^{12}) and also the signals of protons at 4.80-5.20 (2 H, br.s, C¹²-OH and C^{2.0}-OH), 2.78 (1 H, ddd, J = 5.8 Hz, 8.8 Hz, 16.8 Hz, H²³), 2.98 (1 H, ddd, J = 6.0 Hz, 8.9 Hz, 4.9 Hz, 16.8 Hz, H²³), 5.78 (1 H, dq, J = 0.8 Hz, 1.6 Hz, H_{cis}^{26}), 6.05 (1 H, dq, J = 0.8 Hz, 0.8 Hz, 0.8 Hz, H_{cis}^{26}).

The reduction of the ketone (III) with lithium tetrahydroaluminate led to the formation of triterpenes (I) and (II) in a ratio of ~1:1.

In the ¹³C NMR spectra of dammarane triterpenoids the C^{22} and C^{24} resonances of the epimers of the 24(S) series appear in a weaker field than the resonances of the same carbon atoms for the epimers of the 24(R) series [3]. According to this diagnostic characteristic, triterpene (I) apparently has the 24(R)-configuration and (II) the 24(S)-configuration.

HO \mathcal{H} \mathcal{H}

From an ethereal extract of female catkins of *B. divaricata* we have isolated kaempferol [4] and papyriferic acid (12-0-acetylbetulafolienetriol oxide 3-0-malonate) [5].

LITERATURE CITED

- 1. N. Ikekawa, A. Ohta, and M. Seki, Phytochemistry, 11, 3037 (1972).
- G. V. Malinovskaya, N. D. Pokhilo, V. V. Makhan'kov, V. L. Novikov, and N. I. Uvarova, Khim. Prir. Soedin., 323 (1981).
- 3. G. V. Malinovskaya, V. L. Novikov, V. A. Denisenko, and N. I. Uvarova, Khim. Prir. Soedin., 346 (1980).
- 4. W. Karrer, Pflanzenstoffe, Birkhäuser Verlag, Basel (1967), p. 857.
- 5. P. B. Reichardt, J. Org. Chem., 46, No. 22, 4576 (1981).